Use case on the Internet-Advertisement dataset

Dataset Internet-Advertisements

Machine Learning Task: Binary classification

This dataset represents a set of possible advertisements on Internet pages. The features encode the image's geometry (if available) as well as phrases occurring in the URL, the image's URL and alt text, the anchor text, and words occurring near the anchor text. The task is to predict whether an image is an advertisement ("ad") or not ("nonad").

Available at OpenML:

Category: Marketing

# Rows: 3,279 # Columns: 1,558

Target: class


Numeric: height, width, aratio

Nominal: local, url.images.buttons,,, url.hydrogeologist, url.oso,, url.peace.images, url.blipverts, url.tkaine.kats, url.labyrinth, url.advertising.blipverts, url.images.oso, url.area51.corridor, url.ran.gifs,,, url.cnet, url.time.1998, url.josefina3, ...

Machine Learning Use Case Marketing

Area Under ROC Curve (AUC)

Internet Advertisement Auc

Accuracy (ACC)

Internet Advertisement Acc

Balanced Accuracy (BALACC)

Internet Advertisement Balacc

Cross-Entropy Loss (LOGLOSS)

Internet Advertisement Logloss

« Back to Machine Learning Algorithms Comparison